Hackinggroup — Python Workshop — Part 1

A tale about dutch ducks with a fable for British comedy

Thomas Kastner Michael Rodler

2010-12-07

Hagenberger Kreis

Introduction — Wer san ma denn?

Michael Rodler

e aka fOrk, fOrki, fOrkmaster, Gabel, etc.
e Student SIB09

e 3 years coding python for fun

e 3 months coding python for profit

Thomas Kastner

e aka br3z3l, tom
e Student SIB08
e 4 years coding python for fun

Table of contents — Wos ma heit mochn

And because it's a so called “Workshop” we will also write some
code together ;)

GO!' - TU ES!

GO!' - TU ES!

python

>>> import antigravity

Python Version Madness — Whyyyyy?

Python 1.x
e really really old
e sucks

Python 2.x

e new object system
e lots of legacy stuff in stdlib

e >= 2.5 on most (all) linux systems

Python 3.x

e not backwards compatible
e syntax cleanup

e stdlib cleanup

Every tutorial has this — Braucht ma oafoch

Wikipedia about “Hello World!"

A “Hello World"” program is a computer program which prints out
“Hello World!" on a display device. It is used in many introductory
tutorials for teaching a programming language.

Every tutorial has this — Braucht ma oafoch

Wikipedia about “Hello World!"

A “Hello World"” program is a computer program which prints out
“Hello World!" on a display device. It is used in many introductory
tutorials for teaching a programming language.

python

>>> print "Hello World!"”

About variables & types

strong dynamic type system

e dynamic — any variable, any type

e strong — no magic type casting

About variables & types

strong dynamic type system

e dynamic — any variable, any type

e strong — no magic type casting

python

>>> x = 42
>>> x = "If it looks like a duck and quacks like a duck, it

must be a duck.”
>>> x = ["beer”, "wine”, "cheese”]

bout variables & types

strong dynamic type system

e dynamic — any variable, any type

e strong — no magic type casting

X =
x = "If it looks like a duck and quacks like a duck, it
must be a duck.”

x = ["beer”, "wine”, "cheese”]

python
>>> x = "duck” + 42
TypeError: cannot concatenate ’'str’' and 'int' objects

>>> x = "duck” + str(42)

python
>>> x = "Hello " + "I'm” + ” a string”
>>> x.swapcase ()
>>> x.lower ()
>>> x.find('string ")
>>> x.startswith (" Hell")
>>> x.replace(”1'm”, "you're not")
X

>>> x.split(” ")
>>> ", " join(["a”,"b”,"c","d"])

rings

python

>>> x = "Hello " + "I'm” + ” a string”
>>> x.swapcase ()

>>> x.lower ()

>>> x.find('string ")

>>> x.startswith (" Hell”)

>>> x.replace(”1'm”, "you're not")
>>> x.split (" ")

>>> ", " join (["a”,"b","c”,"d"])

python

>>> print "1 'm your %s” % "bitch”

>>> print "Me is %d years old” % 12

>>> print "1 have %s on %s for %s” % ("searched”,
""'wikiquote this quotes”””)

>>> print '%(language)s has %(#)03d quote types.’' %
{’language’': "Python”, "#": 2}

11 o

list, dict, tuple — Eh ois des s6be?

python

>>> party = ["cheese”, "wine”]
>>> party.append(”girls”)

>>> party [0] = "beer”

>>> party += ["schnops”, "punsch”]

>>> xmasparty = x[2:]
>>> print xmasparty

list, dict, tuple — Eh ois des s6be?

python

>>> party = ["cheese”, "wine”

>>> party.append(”girls”)

>>> party [0] = "beer”

>>> party += ["schnops”, "punsch”]
>>> xmasparty = x[2:]

>>> print xmasparty

python

>>> x = {"awesome”: "barney”, 42: "the answer”}
>>> x["awesome”
>>> x[42]

list, dict, tuple — Eh ois des s6be?

python

>>> party = ["cheese”, "wine”

>>> party.append(”girls”)

>>> party [0] = "beer”

>>> party += ["schnops”, "punsch”]
>>> xmasparty = x[2:]

>>> print xmasparty

python

>>> x = {"awesome”: "barney”, 42: "the answer”}
>>> x["awesome”

>>> x[42]

python

>>> x = (13, 37)

>>> a, b = x

>>> b, a=a, b

what if? — A if-Schleife

python

>>> if (True or False):

.. print "win”

. else:
print "fail”

what if? — A if-Schleife

python
>>> if (True or False):
print "win”
else:
print "fail”

Truth value testing

Any object can be tested for truth value. The following values are
considered False:

e None, False, 0
e any empty sequence, for example: “*, (),]
e any empty mapping, for example: {}

All other values are considered true

for as long as | live ...

python

>>> for word in ["python”, "is"”, "awesome”]:
print word

python

>>> for word in "python is so fucking awesome”.split():
print word

>>> for character in "python is so fucking awesome”:
print character

for as long as | live ...

python

>>> for word in ["python”, "is"”, "awesome”]:
print word

python

>>> for word in "python is so fucking awesome”.split():
print word

>>> for character in "python is so fucking awesome”:
print character

Iterating over what?

e returns next element, each round
e every python container type

e yo mama's objects

Curiosity killed the cat, but for a while | was a suspect.

python

>>> while not False:
print "print”

Curiosity killed the cat, but for a while | was a suspect.

python

>>> while not False:
print "print”

python

>>> while state != "legendary"”:
wait_for_it ()

Curiosity killed the cat, but for a while | was a suspect.

python

>>> while not False:
print "print”

python

>>> while state != "legendary”:
wait_for_it ()

jumping
you can also break and continue.

About functions & methods

Where is the fucking difference?

About functions & methods

Where is the fucking difference? — There actually is none

About functions & methods

Where is the fucking difference? — There actually is none

python

>>> def doSomething(arg):
print "function args: " + str(arg)
return str(arg)

>>> x = doSomething(”for the lulz")

ut functions & methods

Where is the fucking difference? — There actually is none

python

>>> def doSomething(arg):
print "function args: " + str(arg)
return str(arg)

>>> x = doSomething(”for the lulz")

>>> def func(arg0, argl="default”, *xargs, sxkwargs):

print "arg0 =", arg0
print "argl =", argl
print "args =", args
print "kwargs =", kwargs

>>> func(1l, 2, 3, 4, 5, 6, john="doe"”, fu="bar")
>>> func(1l, we="don’'t need”, no="overloading!")
>>> func (0)

Example — A Beispii

Exercises

V' write a function (find_mail)
v get text per argument
v search for e-mail addresses (@ in word)
V' return list of e-mail addresses

RTFM — Hilfe zur Selbsthifle

e Python modules are generally well-documented
e Most Python programmers write at least minimal docstrings

RTFM — Hilfe zur Selbsthifle

e Python modules are generally well-documented
e Most Python programmers write at least minimal docstrings

python

>>> import os

>>> help(os)

>>> help(os.abort)
>>> dir(os)

RTFM — Hilfe zur Selbsthifle

e Python modules are generally well-documented
e Most Python programmers write at least minimal docstrings

python

>>> import os

>>> help(os)

>>> help(os.abort)
>>> dir(os)

*sh

[tom@workshop ~]$ pydoc os
[tom@workshop ~]$ pydoc os.path

RTFM — Hilfe zur Selbsthifle

e Python modules are generally well-documented
e Most Python programmers write at least minimal docstrings

python

>>> import os

>>> help(os)

>>> help(os.abort)
>>> dir(os)

*sh

[tom@workshop ~]$ pydoc os
[tom@workshop ~]$ pydoc os.path

python

>>> def function(a, b):
.. """Do X and return a list."”"”
pass

RTFM — Hilfe zur Selbsthifle

e http://docs.python.org
e http://docs.python.org/library/re.html

http://docs.python.org
http://docs.python.org/library/re.html

Zen of Python

python

>>> import this

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one — and preferably only one — obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea — let’s do more of those!

python coding style — actually a religion

http://www.python.org/dev/peps/pep-0008/

Important

4 whitespaces indentation

whitespaces around operators but not around brackets

use docstrings!
e naming conventions

e packages and modules — all lowercase

e classes — CapWords/CamelCase

e variables and functions — all lowercase with underscore as word
seperator

e comparison with Singletons (e.g. None, True) use is keyword

http://www.python.org/dev/peps/pep-0008/

code like a pythonista

“Programs must be written for people to read, and only
incidentally for machines to execute.” — Abelson & Sussman

code like a pythonista

“Programs must be written for people to read, and only
incidentally for machines to execute.” — Abelson & Sussman

not pythonic

colors = ['red’, 'blue’', ’'green’, 'yellow']
result = "’
for s in colors:

result 4+= s

code like a pythonista

“Programs must be written for people to read, and only
incidentally for machines to execute.” — Abelson & Sussman

not pythonic

colors = ['red’, 'blue’', ’'green’, 'yellow']
result = "’
for s in colors:

result 4+= s

pythonic
result = "' .join(colors)
result = ".join(colors)

code like a pythonista

“Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are, by
definition, not smart enough to debug it.” — Brian W. Kernighan

code like a pythonista

“Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are, by
definition, not smart enough to debug it.” — Brian W. Kernighan

not pythonic

for key in d.keys():
print key

if d.has_key(key):
do_something_with (d[key])

code like a pythonista

“Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are, by
definition, not smart enough to debug it.” — Brian W. Kernighan

not pythonic

for key in d.keys():
print key

if d.has_key(key):
do_something_with (d[key])

pythonic

for key in d:
print key

if key in d:
do_something_with (d[key])

code like a pythonista

not pythonic

if x = True:
do_something ()

if len(items) != 0:
do_something ()

if items != []: # yuck!
do_something ()

code like a pythonista

not pythonic

if x = True:
do_something ()

if len(items) != 0:
do_something ()

if items != []: # yuck!
do_something ()

pythonic

if x:
do_something ()

if items:
do_something ()

code like a pythonista

pythonic

>>> items = "zero one two three”.split()
>>> print items

code like a pythonista

pythonic

>>> items = "zero one two three”.split()
>>> print items

not pythonic

index = 0

for item in items:
print index, item
index +=1

for i in range(len(items)):
print i, items][i]

code like a pythonista

pythonic

>>> items = "zero one two three”.split()
>>> print items

not pythonic

index = 0
for item in items:
print index, item

index 4+=1
for i in range(len(items)):
print i, items][i]
pythonic
for (index, item) in enumerate(items):

print index, item

code like a pythonista

bad idea

def bad_append(new_item, a_list=[]):
a_list.append(new_item)
return a_list

code like a pythonista

bad idea

def bad_append(new_item, a_list=[]):
a_list.append(new_item)
return a_list

good idea

def good_append(new_item, a_list=None):
if a_list is None:
a_list = []
a_list .append(new_item)
return a_list

everything is an object — ois, wirkli OIS

actually:
e no primitve types, pure OOP
e no literals, only references to singleton objects

e doesn’'t make much difference

python

>>> x = 21
>>> x 4= 21
>>> x = x..__add__(21)

importing stuff

We already know:

python

>>> import this

We already know:

python

>>> import this

python

>>> import os.path
>>> from random import randint
>>> from threading import x

the sys module

e python built-in library

e provides basic system information

python

>>> import sys
>>> dir(sys)

the sys module

Common use

python

#!/usr/bin/python
import sys

def usage():

print "Usage: %s —p” % sys.argv[0]
sys.exit (1)

if sys.argv[l] = "—p” and len(sys.argv) = 3:
do_stuff_with (sys.argv[2])
sys.exit ()

elif sys.argv[l] = "—h"
usage ()

else:

usage ()

the os module

e Miscellaneous operating system interfaces

e Mostly wrapper for C syscall functions

python

>>> import os

>>> os.getpid ()

>>> os.chdir("/usr")
>>> os.getcwd ()

>>> print os.linesep

the os.path module

e Common pathname manipulations
e Actually several different implementations
e posixpath for UNIX-style paths
e ntpath for Windows paths
e macpath for old-style MacOS paths
e os2emxpath for OS/2 EMX paths

python

>>> import os.path

>>> os.path.exists(".")

>>> os.path.getmtime(”./somefile”)

>>> os.path.abspath(os.path.join(os.getcwd(), "somedir",
"somefile”))

Input/Output

writing to screen

We already know how to write to stdout with print. We can also
use stderr.

python

>>> import sys

>>> print "l can’'t go, |’'ve got this thing....
>>> print >>sys.stderr, "a Penis.”

"

Input/Output

reading from user

Reading from stdin is quite easy.

python

>>> x
>>> y

input(”Please input x: ")
raw_input (" Please input y:

")

Input/Output

reading from user

Reading from stdin is quite easy.

python
>>> x = input(”Please input x: ")
>>> y = raw_input("Please input y: ")

Where's the difference?

e raw_input always returns a string

Input/Output

reading from user

Reading from stdin is quite easy.

python
>>> x = input(”Please input x: ")
>>> y = raw_input("Please input y: ")

Where's the difference?

e raw_input always returns a string

e input evaluates the input

Input/Output

reading from user

Reading from stdin is quite easy.

python
>>> x = input(”Please input x: ")
>>> y = raw_input("Please input y: ")

Where's the difference?

e raw_input always returns a string
e input evaluates the input - DANGEROUS!

Input/Output

reading from user

Reading from stdin is quite easy.

python
>>> x = input(”Please input x: ")
>>> y = raw_input("Please input y: ")

Where's the difference?

e raw_input always returns a string
e input evaluates the input - DANGEROUS!

python

>>> input("bad: ")
bad: __import__('os').getcwd()

Input/Output

writing and reading files

But we can also write to files. To open a file you can use the
built-in open function:

python

>>> help(open)

>>> f = open("bigbang.txt”, "r+")

>>> f.readline ()

"What am | supposed to do?’

>>> f.write("Well, have you considered telling her how you
feel?2\n")

>>> print >>f, "Leonard, |'m a physicist,

not a hippie.’

Input/Output

writing and reading files

But we can also write to files. To open a file you can use the
built-in open function:

python

>>> help(open)
>>> f = open("bigbang.txt”, "r+")
>>> f.readline ()

"What am | supposed to do?’
>>> f.write("Well, have you considered telling her how you

feel?2\n")
>>> print >>f, "Leonard, |'m a physicist, not a hippie.”

File Modes
e r, w, a — read, write, append

e + — append to mode for r/w
e b — append to mode for binary data

Input/Output

a much better way to work with files

New in version 2.5

python

>>> with open("mister.big”, "r") as f:
. content = f.read ()
process(content)

Input/Output

a much better way to work with files

New in version 2.5

python
>>> with open("mister.big”, "r") as f:

content = f.read ()
process(content)

What happens?

e opens file as it would normaly
e executes body
e closes file (even if errors occured!)

Example — A Beispii

Exercises

V' read a text file
V' search text file for e-mail adresses
V' write list of e-mail adresses to another file

v read file with e-mail addresses (as list)

Improvements — Wie mahs bessa mocht

Exercises

V' read line by line
V' rewrite find_ mail to use stream objects

v use regex to search for valid e-mail addresses

Regular Expression — regex, oidal

python

>>> import re

>>> r =
re.compile(r”"[0—-9]{1,3}\.[0-9]{1,3}\.[0—-9]{1,3}\.[0-9]{1,3}")

>>> valid = re.search(”Net is 10.13.37.0") is not None

e re.search matches anywhere in the string string

e re.match matches only at the beginning of the

Things you could improve — Hausaufgaben

Exercises

v’ detect e-mails over multiple lines
V' detect obfuscated e-mails

v' user (at) example (dot) com
v/ user at example dot com

References

the authors’ epic python knowledge
http://docs.python.org/

Code like a Pythonista — http://python.net/~goodger/
projects/pycon/2007/idiomatic/presentation.html

) @ R

http://diveintopython.org/

http://docs.python.org/
http://python.net/~goodger/projects/pycon/2007/idiomatic/presentation.html
http://python.net/~goodger/projects/pycon/2007/idiomatic/presentation.html
http://diveintopython.org/

