Downgrade Attacks by Example How Compatibility breaks Security

Michael Rodler (@f0rki)

2012-01-21

about me

- @f0rki, http://f0rki.at
- Student "Sichere Informationssysteme Bachelor" at FH Hagenberg
 - 5th semester
- Member of Hagenberger Kreis and CTF Team
- Helps organize Security Forum
 - Annual security conference at Hagenberg
 - ▶ 18./19. April 2012
 - www.securityforum.at

- In every application layer protocol there's some kind of Handshake
- Negotiation of common...
 - ... protocol version
 - ... protocol features
 - ... crypto algorithms
 - ... etc.

- Man-in-the-middle (e.g. arp spoofing, fake ra, etc.)
- Attacker can alter traffic

- Man-in-the-middle (e.g. arp spoofing, fake ra, etc.)
- Attacker can alter traffic

Downgrade Attack

The attacker acts as a proxy and alters the communication so that no or weaker security features are used by the client, the server or both.

- published 1994 a long time ago
- had some serious security issues [7]
 - was fixed in SSL 3.0 in 1995
- Vulnerable to some kind of downgrade attack ¹
- No integrity protection of handshake messages

¹called Ciphersuite Rollback Attack back then

Replace Cipher Specs sent by client with weakest cipher suite

Replace Cipher Specs sent by client with weakest cipher suite

```
SSLv2 Record Layer: Client Hello
Length: 28
Handshake Message Type: Client Hello (1)
[...]
Cipher Specs (X specs)
Cipher Spec: SSL2_DES_64_CBC_WITH_MD5 (0x060040)
[...]
Challenge
```

- Integrity protection of handshake introduced
- Handshake ends with:
 - change_cipher_spec change to negotiated parameters
 - finished hash over handshake, key material
- need to check hash in finished message
 - detects tampering of handshake messages

... yeah right ...

- E-Mail is much older than SSL/TLS
 - First SMTP RFC in 1982
- Security introduced later
 - RFC for STARTTLS extension to SMTP in 2002
- Compatibility is essential

- explicit TLS
 - STARTTLS, STLS commandos
 - Client requests switching to TLS secured connection
- implicit TLS
 - imaps, pops
 - no attack vector here

- * OK [CAPABILITY IMAP4rev1 LITERAL+ SASL-IR LOGIN-REFERRALS ID ENABLE IDLE STARTTLS LOGINDISABLED] Dovecot ready.
- 1 STARTTLS
- 1 OK Begin TLS negotiation now.
- < TLS Handshake >

- * OK [CAPABILITY IMAP4rev1 LITERAL+ SASL-IR LOGIN-REFERRALS ID ENABLE IDLE STARTTLS LOGINDISABLED] Dovecot ready.
- 1 STARTTLS
- 1 OK Begin TLS negotiation now.
- < TLS Handshake >

- Attacker strips out STARTTLS and LOGINDISABLED
- tricks client into thinking that the server does not support STARTTLS

```
S: +OK Dovecot ready.
C: CAPA
S: +OK
S: CAPA
S: [...]
S: STLS
S: .
C: STLS
S: .
C: STLS
S: +OK Begin TLS negotiation now.
< TLS Handshake >
```

```
S: +OK Dovecot ready.
C: CAPA
S: +OK
S: CAPA
S: [...]
S: STLS
S: .
C: STLS
S: .
C: STLS
S: +OK Begin TLS negotiation now.
< TLS Handshake >
```

- Attacker strips out STLS
- tricks client into thinking that the server does not support STLS

```
S: 220 testmailer ESMTP Postfix (Ubuntu)
C: EHLO [10.42.42.2]
S: 250-testmailer
S: [...]
S: 250-STARTTLS
C: STARTTLS
S: 220 2.0.0 Ready to start TLS
< TLS Handshake >
```

```
S: 220 testmailer ESMTP Postfix (Ubuntu)
C: EHLO [10.42.42.2]
S: 250-testmailer
S: [...]
S: 250-STARTTLS
C: STARTTLS
S: 220 2.0.0 Ready to start TLS
< TLS Handshake >
```

Attacker strips out STARTTLS

tricks client into thinking that the server does not support STARTTLS

- nothing new
- Attack is descirbed in "Security Considerations" of RFCs
- Responsibility is at the client, to abort insecure connections

- nothing new
- Attack is descirbed in "Security Considerations" of RFCs
- Responsibility is at the client, to abort insecure connections

Mail Clients

- Thunderbird > 3 good
- Outlook 2007 has "automatic" setting == bad
- Windos Live Mail IMAP/POP: no support, SMTP: bad
- Apple Mail (v3.6) no support
- Pegasus Mail good, SMTP: bad

- don't use plaintext auth
- ▶ use PGP or S/MIME for end-to-end encryption
- use implicit TLS, e.g. imaps, pops
- most client software behaves correct anyway
- no real risk here

- Default is browsing over unsecured http:// connection
- Users get redirected to https:// via
 - links in html
 - 302 Redirects
 - Connection: Upgrade Header
- ► As with STARTTLS, this happens in unsecured traffic

sslstrip by Moxie Marlinspike (presented at BlackHat DC 2009) [1] [2]

- http proxy
- strips out https links
- keeps track of https only resources

sslstrip by Moxie Marlinspike (presented at BlackHat DC 2009) [1] [2]

- http proxy
- strips out https links
- keeps track of https only resources

Mitigation

- A smart user?
- https only website

Paper/presentations by László Tóth [5] [6], Steve Ocepek and Wendel G. Henrique [3]

Oracle protocols

- Proprietary protocols
 - Specifications only for \$\$\$
 - \blacktriangleright \rightarrow hard to analyze
- Transparent Network Substrate (TNS)
 - simple/primitve protocol
 - Wireshark decoder exists
- Net8 or SQL*Net
 - complex and obscure
 - no wireshark decoder (only partial implementation)
- TNS transports Net8

- Challenge-Response
- Used crypto algorithms changed with every release

Oracle 8i

- Server sends session key encrypted with DES, Key is oraclehash of the user password
- Client sends user password encrypted with DES, Key is the session key

Oracle 9i

Similar to 8i, but uses 3DES

Oracle 10g/11g

- ► Client/Server both send a session Key → MD5(XOR(ServerKey, ClientKey))
- uses AES-128/192 in 10g/11g

Problems

- DES is broken
- Bruteforce attack
- Java Thin Client till Version 10 supports only 8i

Several Downgrade Attacks published [5] [3] [6]

- Against old versions of Oracle 11 JDBC Driver
- "Downgrade through Replay"
 - Replace Handshake Packets with older Version
 - Combinations of versions and platforms behave differently
 - many WTF?!? moments...
- Attack against Oracle 10g Windows Client and Server
 - Downgrade to Oracle 8i level
 - metasploit module release?

N	о.	Source		Destir	nation			Info												
	1	192.168.209	.1	192.	.168	.209.4:	1	Req	ues	t,	Con	nec	t (1	L),	Con	nect	:			_
	2	192.168.209	.41	192.	168	.209.1		Res	pon	se,	Re	sen	d (1	1)						
	3	192.168.209	.1	192.	.168	.209.43	1	Req	ues	t,	Coni	nec	t (1	L),	Con	nect				
		192.168.209													ACC	ept				
	-	192.168.209				.209.43	_						6),							
	-	192.168.209											(6),							
		192.168.209				.209.4:						-	6),							
	-	192.168.209											(6),							
	-	192.168.209					_						6),							
		192.168.209											(6),							
		192.168.209					L						6), (6).							
4	1	197.164.709	.41	197.	104	. 209.1		RPS		×Р.	Da	а	ini.	. 104	11.4					
	000	00 0c 29 7 00 4d b8 c	• -		00 0		88	1b	7a a8	08 d1		45 c0	00 a8		.) м@			.z.		
	020	d1 29 04 c)9 c3	ce	с0 е4	ba	ab	02		18		M	*•••				
ā	030	ff 58 2a 0	ōŏ	ō 00	00 2			<u>0</u> 6			00	00	00		×*	%				
	040	01 05 05 0	4 0					4d	50	43	2f	57	49					MPC.	/WI	
Ľ	050	4e 5 7 4e 5	4 2	a 38	2e :	SI 28	30	00						P.	I_NT-	-8.I		•		
		\ \																		
1		first va	lue	was	chan	ged fro	m (0x06	6 to	0x0)5									
						-														

Attack!

No.		Source				1	Destir	natior	n			Info								
	3	192.	168	. 20	9.1	1	192.	.16	8.2	09.4	1	Rea	ues	t	Con	nec	t Č	1), Connec	t	
	-	192.																2), Accept		
	5	192.	168	.20	9.1	1	192	.16	8.2	09.4	1							SNS		
	6	192.	168	. 20	9.4	41	192.	.16	8.2	09.1								, SNS		
	7	192.	168	. 20	9.1	L	192.	.16	8.2	09.4	1							Data		
	8	192.	168	.20	9.4	41	192.	.16	8.2	09.1		Res	pon	se,	Da	ta	(6)	, Data		
	9	192.	168	.20	9.1	1	192.	.16	8.2	09.4	1							Data		
1	.0	192.	168	.20	9.4	41	192.	.16	8.2	09.1		Res	pon	se,	Da	ta	(6)	, Data		
1	.1	192.	168	.20	9.1	l	192.	.16	8.2	09.4	1	Req	ues	t,	Dat	a (6),	Data		
1	.2	192.	168	.20	9.4	41	192.	.16	8.2	09.1		Res	pon	se,	Da	ta	(6)	, Data		
1	.3	192.	168	.20	9.1	1	192.	.16	8.2	09.4	1	Req	ues	t,	Dat	a (6),	Data		
4	4	100	100		· · ·	4-1	100	10	<u> </u>	00 1					-		<u>~</u>	D		
<u> </u>																				
000					C0	00	04	00	0c	29			7a				00	.PV		
001				1e	9e f1	40	00	80	06	b8	2a		a8	d1		CÛ	a8	· · · · @. · ·	·*···).··	
002		f9		05 39	50	04	C3	e4 00	ba 8b	ab 00	02	9d 06	09 00	C3	f3	50 00	18 00	.н9р	····P.	
004				00	49	42	4d		43	2f	57		4e		4e	54	2d		/win_nt-	
005		38			2e	30		b2		01	00	00	00	64			00	8.1.0	d	
006					0f	05	0b 05			0C	00	05	04	05	Od Oa	06	09	· . \$		
007				05	03	05	06			05	05 23	05 47	05 23	23	08		05 23		#~## #	
009				41		žš		83.	ŏŏ	b2	07		03	00	ŏŏ		00			
00a			00			00		00		00		00	00	00	00	00	00			
00b			00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	• • • • • • • •		
00c	U	00					\mathbf{N}													
							<u></u> ,	dow	mai	rade	wa	sac	cer	ted						
								aon	ngi	uue	wa	sac	.cep	neu						

N	о.	Source				Destir					Info												
E	-	192.1						3.209								u – C							
	-																	Conr					
		192.1						3.209										ACCE	⊇рт				
	-	192.1			-			3.209		-						6),							
		192.1						3.209					•			(6)							
	- 7	192.1	68.2	09.1				3.209		L	Req	ues:	t,	Dat	a (6),	Da	ta					
	8	192.1	68.2	09.4				3.209			Res	pon	se,	Dar	ta	(6)	, D	ata					
	9	192.1	68.2	09.1	L	192.	.168	3.209	9.41	L	Req	ues:	t,	Dat	a (6),	Dar	ta					
	10	192.1	68.2	09.4	11	192.	.168	3.209	9.1		Res	pon	se,	Dar	ta	(6)	, D	ata					
	11	192.1	68.2	09.1	L	192.	.168	3.209	9.41	L	Req	ues:	t,	Dat	a (6),	Dar	ta					
	12	192.1	68.2	09.4	11	192.	.168	3.209	9.1		Res	pon	se,	Dar	ta	(6)	, D.	ata					
	13	192.1	68.2	09.1	L	192.	.168	3.209	9.41	L	Req	ues:	t, I	Dat	a (6),	Dar	ta					
4																							
																	_						
	040	03 7 ef 1		90 0c	80 00	аб 00		04 CC	00 eb	00	00	01 b4	01 fb	00 12	00	24 04		s	•••		• • • •	\$	
	050	78 64		61	00 0d	00	00	00		41	55	54 54	48	5f	50	41	/	dba.		1.27	ітн ғ		
	070	53 5		4f	52			ŏŏ		00	11	32	37	31	37	31		SSWOR		:	2717)
	080	36 4	5 46	46	35			31	31	34	39	34	00	00	00	00		FFF5		149		. /	/
	090	08 0		00	08	41		54	48	5f	52	54	54	05	00	00			AUT	H_R	ΤТ		
	0a0	00 0		36	37		33	00		00	00	0d	00	00	00	0d		.767				•	
	0b0	41 5		48	5f	43		4e	54	5f	4d	45	4d			00		UTH_		v	1EM	:	
	0c0 0d0	00 04 55 54		30 5f	39 54	36 45	00 52	00 4 d	00 49	00 4e	0d 41	$\frac{00}{4c}$	00	00	0d 00	41 00		.409 ЛТН Т		ты.		A	
	0e0	08 4		48	30	36		35	43	00	00	00	ŏŏ		00	00		MCHO		- TNA		•	
	ofo	00 0 ¹		55	54	48	5f	50		4Ť	47	52	41	4d	ŠŤ.	4e		. AUT		ROG	RAM	Ň	
0	100	4d 01	b 00	00	00		73	71	6c	70	6c	75	73		65	78		1	.sq	lpl	us.e	2X	
0	110	65 0	0 00	00	00	0c	00	00	00	0c	41	55	54	48	5f	4 d	e	2		A	UTH_	м	

- Strong passwords
- Keep Software up to date
 - espescially JDBC driver
- Configure minimal accepted net8 version SQLNET.ALLOWED_LOGON_VERSION
- (buy Oracle Advanced Security)
- (tunnel over SSH or SSL)

Questions?

- Tabular Data Stream Protocol (TDS)
 - Open Spezifikation [4]
 - \rightarrow not as painful as analyzing Oracle ;)
 - Wireshark Decoder exists
- Two types of authentication
 - Native authentication
 - Integrated/Windows authentication

- Authentication with "'Login7"' packet
- No cryptographic Challenge-Response, no crypto at all???
- Password is obfuscated
 - no problem: obfuscation algorithm is in the standard

- Authentication with "'Login7"' packet
- No cryptographic Challenge-Response, no crypto at all???
- Password is obfuscated
 - no problem: obfuscation algorithm is in the standard

but...

4 192.168.209.1 192.168.209.11 TDS7 pre-login message 5 192.168.209.11 192.168.209.1 Response 6 192.168.209.1 192.168.209.11 TDS7 pre-login message 7 192.168.209.11 192.168.209.1 TDS7 pre-login message 8 192.168.209.1 192.168.209.11 TDS7 pre-login message 9 192.168.209.11 192.168.209.1 TDS7 pre-login message 10 192.168.209.1 192.168.209.11 Unknown Packet Type: 23[Unreassembled Packet] 11 192.168.209.11 192.168.209.1 Response[Unreassembled Packet] 12 192.168.209.1 192.168.209.11 SQL batch 13 192.168.209.11 192.168.209.1 Response[Unreassembled Packet]

4 192.168.209.1	192.168.209.11	Ignored Unknown	Record
5 192.168.209.11	192.168.209.1	Ignored Unknown	Record
6 192.168.209.1	192.168.209.11	Ignored Unknown	Record
7 192.168.209.11	192.168.209.1	Ignored Unknown	Record
8 192.168.209.1	192.168.209.11	Ignored Unknown	Record
9 192.168.209.11	192.168.209.1	Ignored Unknown	Record
10 192.168.209.1	192.168.209.11	Application Data	1
11 192.168.209.11	192.168.209.1	Ignored Unknown	Record
12 192.168.209.1	192.168.209.11	Ignored Unknown	Record
13 192.168.209.11	192.168.209.1	Ianored Unknown	Record

.

SSL Handshake inside TDS Pre-Login packets

SSL Certificate is not checked

- SSL Handshake inside TDS Pre-Login packets
 - SSL Certificate is not checked
- First Pre-Login packet
 - Sends protocol version, features, etc.
 - One field is called "'Encryption"' :)

SSL Handshake inside TDS Pre-Login packets

SSL Certificate is not checked

First Pre-Login packet

- Sends protocol version, features, etc.
- One field is called "'Encryption"' :)

ENCRYPT_OFF	0x00	Encryption available but off.
ENCRYPT_ON	0x01	Encryption is available and on.
ENCRYPT_NOT_SUP	0x02	Encryption is not available.
ENCRYPT_REQ	0×03	Encryption is required.

- 1. MITM Attack
- 2. Transparent "TDS-Proxy" as metasploit module
 - Sets "Encryption" field to "ENCRYPT_NOT_SUP"
- 3. ???
- 4. PROFIT!!!

Demo!

use Windows Integrated Authentication

- default during setup
- Microsofts recomendation
- use "Force Encryption" option at server
- force encryption on client

use Windows Integrated Authentication

- default during setup
- Microsofts recomendation
- use "Force Encryption" option at server
- force encryption on client

Responsible Disclosure \rightarrow Answer

"'Please note that SQL Server does not offer an option to enforce encryption of only the login packet (a.k.a. username & password), and at this point we have no plans to introduce such option."'

- Microsoft Incident Handler

Mitigation in general

Protocol Design

- Integrity protection of handshake messages
- Integrity more important than Confidentiality
 - no all or nothing
 - allow Integrity protection without Encryption
- use TLS from the beginning

Client/Server behaviour

- Abort connection on insufficient security
- alert user
- Ability to configure minimal version

Any Questions?

References I

- Moxie Marlinspike. New Tricks For Defeating SSL In Practice. URL: https://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf (visited on 01/05/2011).
- Moxie Marlinspike. *sslstrip*. URL: http://www.thoughtcrime.org/software/sslstrip/ (visited on 01/05/2011).
- Steve Ocepek and Wendel G. Henrique. Oracle, Interrupted: Stealing Sessions and Credentials. Tech. rep. 2010. URL: https: //www.trustwave.com/downloads/spiderlabs/Trustwave-SpiderLabs-Oracle-Interrupted-Henrique-and-Ocepek.pdf (visited on 11/16/2011).

- . Tabular Data Stream Protocol Specificationn. 2011. URL: http://msdn.microsoft.com/en-us/library/cc448435.aspx (visited on 11/16/2011).
- László Tóth. Downgrading the Oracle native authentication. Tech. rep. Price Waterhouse Coopers, Feb. 2007. URL: http://www.pwc.com/en_HU/hu/services/assets/oraauthdgpub.pdf (visited on 11/16/2011).
 - László Tóth. Oracle Authentication. URL: http: //soonerorlater.hu/download/hacktivity_lt_2009_en.pdf (visited on 12/19/2011).

David Wagner and Bruce Schneier. "Analysis of the SSL 3.0 protocol". In: Proceedings of the 2nd conference on Proceedings of the Second USENIX Workshop on Electronic Commerce - Volume 2. Oakland, California: USENIX Association, 1996, pp. 4–4. URL: https://www.schneier.com/paper-ssl-revised.pdf (visited on 11/16/2011).